Effect of renal denervation on dynamic autoregulation of renal blood flow.
نویسندگان
چکیده
Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.
منابع مشابه
Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats.
Previous studies have shown that renal autoregulation dynamically stabilizes renal blood flow (RBF). The role of renal nerves, particularly of a baroreflex component, in dynamic regulation of RBF remains unclear. The relative roles of autoregulation and mesenteric nerves in dynamic regulation of blood flow in the superior mesenteric artery (MBF) are similarly unclear. In this study, transfer fu...
متن کاملEffect of hemorrhagic reduction in blood pressure on recovery from acute renal failure.
The effect of hemorrhagic reduction in systemic blood pressure (SBP) to 90 mm Hg for four hours on autoregulation of renal blood flow (RBF), renal function, and renal histology was examined in control rats, one week norepinephrine-induced acute renal failure (NE-ARF) rats with intact renal nerves, and one week NE-ARF rats with prior renal denervation. The results showed that in control rats, he...
متن کاملEffect of hypoxia and hypercapnic acidosis on renal autoregulation in the dog: role of renal nerves.
Previous studies suggest that hypoxia and hypercapnic acidosis exert a renal nerve mediated adverse effect on renal haemodynamic function. We therefore examined the effect of hypoxia and hypercapnic acidosis on renal blood flow and glomerular filtration rate responses to lowering renal perfusion pressure from 125 to 75 mmHg in the anaesthetized dog. To study the role of renal nerves in these re...
متن کاملResetting of renal blood autoregulation during acute blood pressure reduction in hypertensive rats.
Decrease in systemic blood pressure, duration of pressure decrease, and change in the activity of the renin or the sympathetic nervous system may represent mechanisms involved in resetting the renal blood flow (RBF) autoregulation found in hypertensive rats. Autoregulation of RBF, plasma renin concentration (PRC), and the time needed for resetting to take place were studied in the nonclipped ki...
متن کاملNumerical Investigation of Angulation Effects in Stenosed Renal Arteries
Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 286 6 شماره
صفحات -
تاریخ انتشار 2004